Long COVID syndrome in children: neutrophilic granulocyte dysfunction and its correlation with disease severity

  1. Mahase, E. Covid-19: who declares pandemic because of “alarming levels” of spread, severity, and inaction. BMJ 368, m1036 (2020).
  2. Article PubMed  Google Scholar 
  3. AlGhamdi, A. et al. Epidemiology, clinical characteristics and risk factors of Covid-19 among children in Saudi Arabia: a multicenter chart review study. BMC Pediatr. 22, 86 (2022).
  4. Article CAS PubMed PubMed Central  Google Scholar 
  5. Naeimi, R. et al. Sars-Cov-2 seroprevalence in children worldwide: a systematic review and meta-analysis. eClinicalMedicine 56, 101786 (2023).
  6. Dong, Y. et al. Epidemiology of Covid-19 among children in China. Pediatrics 145, e20200702 (2020).
  7. Viner, R. M. et al. Systematic review of reviews of symptoms and signs of Covid-19 in children and adolescents. Arch. Dis. Child. 102, 802–807 (2020).
  8. In Covid-19 rapid guideline: managing the long-term effects of Covid-19 (National Institute for Health and Care Excellence (NICE) Copyright © NICE 2020., 2020).
  9. Team, W. A clinical case definition of post Covid-19 condition by a Delphi Consensus, <https://iris.who.int/handle/10665/345824> (2021).
  10. Team, W. A clinical case definition for post covid-19 condition in children and adolescents by expert consensus, 16 February 2023, <https://www.who.int/publications/i/item/WHO-2019-nCoV-Post-COVID-19-condition-CA-Clinical-case-definition-2023-1> (2023).
  11. Stephenson, T. et al. Long Covid (post-covid-19 condition) in children: a modified delphi process. Arch. Dis. Child. 107, 674–680 (2022).
  12. Article PubMed  Google Scholar 
  13. Behnood, S. A. et al. Persistent symptoms following sars-cov-2 infection amongst children and young people: a meta-analysis of controlled and uncontrolled studies. J. Infect. 84, 158–170 (2022).
  14. Article CAS PubMed  Google Scholar 
  15. Pellegrino, R., Chiappini, E., Licari, A., Galli, L. & Marseglia, G. L. Prevalence and clinical presentation of long covid in children: a systematic review. Eur. J. Pediatr. 181, 3995–4009 (2022).
  16. Article PubMed PubMed Central  Google Scholar 
  17. Lopez-Leon, S. et al. Long-Covid in children and adolescents: a systematic review and meta-analyses. Sci. Rep. 12, 9950 (2022).
  18. Article CAS PubMed PubMed Central  Google Scholar 
  19. Jiang, L., Li, X., Nie, J., Tang, K. & Bhutta, Z. A. A systematic review of persistent clinical features after Sars-Cov-2 in the pediatric population. Pediatrics 152, e2022060351 (2023).
  20. Behnood, S. et al. Persistent symptoms are associated with long term effects of Covid-19 among children and young people: results from a systematic review and meta-analysis of controlled studies. PLoS One 18, e0293600 (2023).
  21. Article CAS PubMed PubMed Central  Google Scholar 
  22. Filippatos, F., Tatsi, E. B. & Michos, A. Post‑Covid‑19 syndrome in children (Review). Exp. Ther. Med. 24, 609 (2022).
  23. Article CAS PubMed PubMed Central  Google Scholar 
  24. Ahn, S. N. The potential impact of Covid-19 on health-related quality of life in children and adolescents: a systematic review. Int. J. Environ. Res. Public Health. 19, 14740 (2022).
  25. Ghader, N. et al. Prevalence and factors associated with mental illness symptoms among school students post lockdown of the covid-19 pandemic in the united arab emirates: a cross-sectional national study. PLoS One 19, e0296479 (2024).
  26. Article CAS PubMed PubMed Central  Google Scholar 
  27. Stephenson, T. et al. Long Covid and the mental and physical health of children and young people: national matched cohort study protocol (the Clock Study). BMJ Open 11, e052838 (2021).
  28. Article PubMed  Google Scholar 
  29. Kikkenborg Berg, S. et al. Long Covid symptoms in Sars-Cov-2-positive adolescents and matched controls (Longcovidkidsdk): a national cross-sectional study. Lancet Child Adolesc. Health 6, 240–248 (2022).
  30. Article CAS PubMed PubMed Central  Google Scholar 
  31. Wang, J. et al. Excessive neutrophils and neutrophil extracellular traps in Covid-19. Front. Immunol. 11, 2063 (2020).
  32. Article CAS PubMed PubMed Central  Google Scholar 
  33. Arostegui, D. et al. Persistent Sars-Cov-2 nucleocapsid protein presence in the intestinal epithelium of a pediatric patient 3 months after acute. Infect. JPGN Rep. 3, e152 (2022).
  34. Article CAS PubMed  Google Scholar 
  35. Stephenson, T., Shafran, R. & Ladhani, S. N. Long Covid in children and adolescents. Curr. Opin. Infect. Dis. 35, 461–467 (2022).
  36. Article PubMed PubMed Central  Google Scholar 
  37. Colmenero, I. et al. Sars-Cov-2 endothelial infection causes Covid-19 chilblains: histopathological, immunohistochemical and ultrastructural study of seven paediatric cases. Br. J. Dermatol. 183, 729–737 (2020).
  38. Article CAS PubMed PubMed Central  Google Scholar 
  39. Buonsenso, D., Piazza, M., Boner, A. L. & Bellanti, J. A. Long Covid: a proposed hypothesis-driven model of viral persistence for the pathophysiology of the syndrome. Allergy Asthma Proc. 43, 187–193 (2022).
  40. Article CAS PubMed PubMed Central  Google Scholar 
  41. Stein, S. R. et al. Sars-Cov-2 infection and persistence in the human body and brain at autopsy. Nature 612, 758–763 (2022).
  42. Article CAS PubMed PubMed Central  Google Scholar 
  43. Zuo, W. et al. The persistence of Sars-Cov-2 in tissues and its association with long covid symptoms: a cross-sectional cohort study in China. Lancet Infect. Dis. 24, 845–855 (2024).
  44. Article CAS PubMed  Google Scholar 
  45. Yin, J. X. et al. Increased interleukin-6 is associated with Long Covid-19: a systematic review and meta-analysis. Infect. Dis. Poverty 12, 43 (2023).
  46. Article PubMed PubMed Central  Google Scholar 
  47. Schultheiß, C. et al. The Il-1β, Il-6, and Tnf cytokine triad is associated with post-acute sequelae of covid-19. Cell Rep. Med. 3, 100663 (2022).
  48. Article PubMed PubMed Central  Google Scholar 
  49. Sante, G. D. et al. Immune profile of children with post-acute sequelae of Sars-Cov-2 infection (Long Covid). medRxiv, https://www.medrxiv.org/content/10.1101/2021.05.07.21256539v1 (2021).
  50. Buonsenso, D. et al. Recovering or persisting: the immunopathological features of Sars-Cov-2 infection in children. J. Clin. Med. 11, 4363 (2022).
  51. Jukema, B. N. et al. Neutrophil and eosinophil responses remain abnormal for several months in primary care patients with covid-19 disease. Front Allergy 3, 942699 (2022).
  52. Article CAS PubMed PubMed Central  Google Scholar 
  53. George, P. M. et al. A persistent neutrophil-associated immune signature characterizes post-Covid-19 pulmonary sequelae. Sci. Transl. Med. 14, eabo5795 (2022).
  54. Article CAS PubMed  Google Scholar 
  55. Siemińska, I. et al. Mild and asymptomatic Covid-19 convalescents present long-term endotype of immunosuppression associated with neutrophil subsets possessing regulatory functions. Front. Immunol. 12, 748097 (2021).
  56. Article PubMed PubMed Central  Google Scholar 
  57. Dean, L. S. et al. Phenotypic alteration of low-density granulocytes in people with pulmonary post-acute sequalae of Sars-Cov-2 infection. Front. Immunol. 13, 1076724 (2022).
  58. Article CAS PubMed PubMed Central  Google Scholar 
  59. Ryan, F. J. et al. Long-term perturbation of the peripheral immune system months after Sars-Cov-2 infection. BMC Med. 20, 26 (2022).
  60. Article CAS PubMed PubMed Central  Google Scholar 
  61. Güven, D. & Buluş, A. D. Clinical and laboratory predictors of long-covid in children: a single center retrospective study. Eur. Rev. Med. Pharm. Sci. 26, 7695–7704 (2022).
  62. Google Scholar 
  63. Organisation, W. H. Global Covid-19 clinical platform case report form (Crf) for post covid condition (Post Covid-19 Crf), <https://www.who.int/publications/i/item/global-covid-19-clinical-platform-case-report-form-(crf)-for-post-covid-conditions-(post-covid-19-crf-))>
  64. Garai, R. et al. Clinical assessment of children with long covid syndrome. Pediatr. Res. 93, 1616–1625 (2022).
  65. Herczeg, V. et al. Thyroid disturbances after Covid-19 and the effect of vaccination in children: a prospective tri-center registry analysis. Eur. J. Pediatr. 182, 4443–4455 (2023).
  66. Mathieu, E. et al. Coronavirus Pandemic (Covid-19), <Retrieved from: https://ourworldindata.org/coronavirus [Online Resource]> (2020).
  67. Organization, W. H. Living guidance for clinical management of Covid-19, <https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-2>
  68. Kolonics, F. et al. Neutrophils produce proinflammatory or anti-inflammatory extracellular vesicles depending on the environmental conditions. J. Leukoc. Biol. 109, 793–806 (2021).
  69. Article CAS PubMed  Google Scholar 
  70. Lőrincz, Á. M. et al. Role of Mac-1 integrin in generation of extracellular vesicles with antibacterial capacity from neutrophilic granulocytes. J. Extracell. Vesicles 9, 1698889 (2020).
  71. Article PubMed  Google Scholar 
  72. Csepanyi-Komi, R., Sirokmany, G., Geiszt, M. & Ligeti, E. Arhgap25, a novel Rac Gtpase-activating protein, regulates phagocytosis in human neutrophilic granulocytes. Blood 119, 573–582 (2012).
  73. Article CAS PubMed  Google Scholar 
  74. Futosi, K. et al. Dasatinib inhibits proinflammatory functions of mature human neutrophils. Blood 119, 4981–4991 (2012).
  75. Article CAS PubMed PubMed Central  Google Scholar 
  76. Harris, P. A. et al. Research electronic data capture (Redcap)-a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inf. 42, 377–381 (2009).
  77. Article  Google Scholar 
  78. Harris, P. A. et al. The Redcap consortium: building an international community of software platform partners. J. Biomed. Inf. 95, 103208 (2019).
  79. Article  Google Scholar 
  80. Joy, G. et al. Prospective case-control study of cardiovascular abnormalities 6 months following mild Covid-19 in healthcare workers. JACC Cardiovasc. Imaging 14, 2155–2166 (2021).
  81. Article PubMed PubMed Central  Google Scholar 
  82. Gorecka, M. et al. Cardiovascular magnetic resonance imaging and spectroscopy in clinical long-Covid-19 syndrome: a prospective case-control study. J. Cardiovasc. Magn. Reson. 24, 50 (2022).
  83. Article PubMed PubMed Central  Google Scholar 
  84. Zhu, Q., Xu, Y., Wang, T. & Xie, F. Innate and adaptive immune response in Sars-Cov-2 infection-current perspectives. Front. Immunol. 13, 1053437 (2022).
  85. Article CAS PubMed PubMed Central  Google Scholar 
  86. Ning, X., Wang, W. M. & Jin, H. Z. Low-density granulocytes in immune-mediated inflammatory diseases. J. Immunol. Res. 2022, 1622160 (2022).
  87. Article PubMed PubMed Central  Google Scholar 
  88. Chatfield, S. M., Thieblemont, N. & Witko-Sarsat, V. Expanding neutrophil horizons: new concepts in inflammation. J. Innate Immun. 10, 422–431 (2018).
  89. Article CAS PubMed PubMed Central  Google Scholar 
  90. Scapini, P. et al. The neutrophil as a cellular source of chemokines. Immunol. Rev. 177, 195–203 (2000).
  91. Article CAS PubMed  Google Scholar 
  92. Hacbarth, E. & Kajdacsy-Balla, A. Low density neutrophils in patients with systemic lupus erythematosus, rheumatoid arthritis, and acute rheumatic fever. Arthritis Rheum. 29, 1334–1342 (1986).
  93. Article CAS PubMed  Google Scholar 
  94. Espín, E. et al. Cellular and molecular biomarkers of long covid: a scoping review. EBioMedicine 91, 104552 (2023).
  95. Article PubMed PubMed Central  Google Scholar 
  96. Borczuk, A. C. & Yantiss, R. K. The pathogenesis of Coronavirus-19 disease. J. Biomed. Sci. 29, 87 (2022).
  97. Article CAS PubMed PubMed Central  Google Scholar 
  98. Islam, M. S., Wang, Z., Abdel-Mohsen, M., Chen, X. & Montaner, L. J. Tissue injury and leukocyte changes in post-acute sequelae of Sars-Cov-2: review of 2833 post-acute patient outcomes per immune dysregulation and microbial translocation in long Covid. J. Leukoc. Biol. 113, 236–254 (2023).
  99. Article PubMed  Google Scholar 
  100. Pandolfi, L. et al. Neutrophil extracellular traps induce the epithelial-mesenchymal transition: implications in post-Covid-19 fibrosis. Front, Immunol. 12, 663303 (2021).
  101. Article CAS PubMed  Google Scholar 
  102. Davis, H. E., McCorkell, L., Vogel, J. M. & Topol, E. J. Long Covid: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 21, 133–146 (2023).
  103. Article CAS PubMed PubMed Central  Google Scholar 
  104. Mizrahi, B. et al. Long covid outcomes at one year after mild Sars-Cov-2 infection: nationwide Cohort Study. BMJ 380, e072529 (2023).
  105. Article PubMed  Google Scholar 
  106. Long term damage after Covid-19, <https://www.infectioncontroltoday.com/view/covid-19-study-suggests-long-term-damage-immune-system> (2023).

Leave a Reply

Your email address will not be published. Required fields are marked *